School of Engineering and Computer Science MECH 485: Computer-aided Engineering

Catalog Data:		485 Computer-aided Engineering 3 Course Prerequisite: MECH 215; MECH 310 or concurrent enrollment. Introduction to the use of finite element techniques in			
		engineering product design and analysis; basic concepts and applications in CAE.			
		Offered at 400 and 500 level. Typically offered Spring.			
Class Schedule:		Three 50-minute lecture sessions per week, for one semester.			
Laboratory Schedule:		None			
Prerequisites by Course:		MECH 215; MECH 310 or c//.			
Prerequisites by		1. Knowledge of linear algebra			
Topic:		 Understanding of stress, strain and deformation Basic understanding of static and fatigue failure theories 			
Textbook:		Xiaolin Chen and Yijun Liu, <i>Finite Element Modeling and Simulation with ANSYS Workbench</i> , CRC, Press- Taylor & Francis (Recommended)			
Course Coordinator:		Dr. Linda (Xiaolin) Chen			
Course Objectives:		 Provide a basic understanding of finite element analysis concept. Apply finite element analysis to the computer-aided design and optimization process. Effectively use a major FEA software tool. Enhance modeling, problem-solving and communication skills through projects. 			
Topics Covered:		 Introduction to finite element method Bar and beam elements, linear static analysis Introduction to ANSYS FEA Engineering Analysis Software Plate and shell elements, two-dimensional elasticity analysis Solid elements for three-dimensional problems Computer-aided design and optimization Structural vibration and dynamics 			
Lab Experiments and Activities:		None			
Course Outcomes:		Students will be able to:			
	Assessed for Student Outcomes	 3-a. Produce project reports for professional audience using discipline-specific conventions, including graph/table, etc. 3-b. Deliver well-organized, logical oral presentations for the simulation projects, including good explanations when questioned. 6-a. Classify information to identify constraints, assumptions and models for finite element simulation. 6-b. Simulate physical behaviors of mechanical structures and/or systems using finite element analysis. 			
	Other	 6-c. Conduct analysis and interpretation of finite element simulation results. 6-d. Draw conclusions from the finite element simulation results to make design recommendations. 			
Required or Elective Course:		Elective			

Relationship of Course to Program:	Meets: Educational Objectives <u>1, 2, 4</u> Student Outcomes <u>3, 6</u>		
Prepared by:	Dr. Linda (Xiaolin) Chen	Date:	March 7, 2018 (04/09/18 mb) Rev. 5-23-19
Approved by USC:	4/9/2018		