School of Engineering and Computer Science MECH 442/542: Advanced Thermal Systems

Catalog Data:	442 Advanced Thermal Systems 3 Course Prerequisite: MECH 404.
Culuiog Dulu.	Analysis and design of advanced thermal systems at macro, mini and micro
	scales; applied design software packages; design projects. Credit not granted
	for both MECH 442 and MECH 542. Offered at 400 and 500 level.
	Typically offered Spring.
Class Schedule:	
	Two 75-minute lectures per week, for one semester.
Laboratory Schedule:	None NECH 404
Prerequisites by Course:	MECH 404
Prerequisites by Topic:	Knowledge and understanding fundamentals of:
	- engineering thermodynamics; thermodynamic properties of matter, work
	and heat, 1st and 2nd laws of thermodynamics
	- engineering fluid mechanics; fluid properties, Newton's 2nd law,
	similitude, laminar and turbulent flow, pipe flow, boundary layer flow
	- engineering heat transfer; conduction, convention, and radiation heat
	transfer
Textbook:	Thermal Design & Optimization, Adrian Bejan, George Tsatsaronis,
	Michael Moran, Wiley-Interscience.
Course Coordinator:	Dr. Sun Ung Kim
Course Objectives:	1. Combine the fundamentals of engineering thermodynamics, fluid
	mechanics, and heat transfer to analyze advanced thermal systems.
	2. Apply the conservation laws, i.e., mass, momentum, and energy, on
	thermal systems under steady-state and transient conditions.
	3. Explain and analyze the operation of vapor and gas power systems and
	predict their performance.
	4. Explain and analyze the operation of refrigeration and air-conditioning
	systems and predict their performance.
	5. Understand and explain advanced topics in thermal systems design, e.g.,
	electronics cooling and thermal management, microchannel heat transfer
	and fluid flow, energy resources, renewable energy, thermal systems
	optimization, etc.
	6. Learn, use, and implement appropriate software packages, such as Icepak
	and/or Fluent, in design projects.
	7. Design, build, and test a thermal system, such as micro-scale heat sinks
	for electronics devices, and present the project in class.
Topics Covered:	1. Vapor and gas power systems
	2. Refrigeration and heat pump systems
	3. Air conditioning and drying systems
	4. Energy resources and renewable energy
	5. Microchannel heat transfer and fluid flow
	6. Heat conduction in extended surfaces
	7. Natural convection in thermal systems
	8. Thermal management in electronics devices
	9. Two-phase flow, condensation and evaporation
	10. Design-software packages

Lab Experiments and Activities:		This course does not intend to have any regular lab sessions; however, some of the equipment in the thermo/fluids lab will occasionally be used for the design projects to collect experimental data and compare them with the theory, such as using the electronics cooling wind tunnel to design and test micro-scale heat sinks for electronics devices.
Course Outcomes:	Students will be able to:	
	Assessed for Student Outcomes	2.d. Generate solutions that meet specified needs for engineering designs of advanced thermal systems.4.a. Evaluate thermal engineering design solutions in consideration of the global, economic, environmental, and societal impacts.
	Other	 Apply mathematics, scientific and/or engineering principles toward solving thermal engineering problems. Apply the engineering design process (such as concept generation, modeling, evaluation, and iteration) to satisfy project requirements for advanced thermal systems. Analyze a thermal engineering system within realistic constraints, such as economic, environmental, social, cultural, global, public health, safety, welfare, and other factors appropriate to the discipline. Use appropriate equipment and techniques for thermal system projects.
Required or Elective Course:		Elective
Contribution to Professional Component:		Engineering Topics
Relationship of Course to Program:		Meets: Educational Objectives <u>?, ?, ?</u> Student Outcomes <u>1, 2, 4, 6</u>
Prepared by: Approved by USC:		Dr. Sun Ung Kim Date: 7/14/2018