

School of Engineering and Computer Science MECH 439: Foundations of Aerodynamics

Catalog Data:	439 Foundations of Aerodynamics 3 Course Prerequisite: MATH 315; MECH		
	303. Governing equations of fluid mechanics, potential flow, introduction to		
	aerodynamics, thin airfoil theory, compressible flow, viscous effects. Typically		
	offered Fall.		
Class Schedule:	Three 50-minute lectures per week, for one semester		
Laboratory Schedule:	None		
Prerequisites by Course:	MECH 303, MATH 315		
Prerequisites by Topic:	1. Undergraduate fluid mechanics		
	2. Good understanding of calculus		
	3. Basic understanding of differential equations		
Textbook:	John D. Anderson, Fundamentals of Aerodynamics, 5th Edition, McGraw-Hill,		
	2011.		
Course Coordinator:	Dr. Stephen Solovitz		
Course Objectives:	1. Develop conservation equations for aerodynamic analysis.		
	2. Use potential flow solutions to examine motion around streamlined shapes.		
	3. Analyze lift for thin airfoils and finite wings.		
	4. Examine compressibility effects on internal flow and supersonic airfoils.		
	5. Understand how viscosity generates frictional and pressure drag.		
	6. Experimentally study an aerodynamic design in the laboratory.		
Topics Covered:	1. Conservation equations		
	2. Potential flow		
	3. Aerodynamics		
	4. Thin airfoils		
	5. Compressible flow		
	6. Viscous effects		
Lab Experiments and	This course will not hold regular laboratory activities, but some laboratory		
Activities:	equipment will be used for design project evaluation.		
Course o Octoorne en			
Course Outcomes: Stude	ents will be able to:		
	1-d. Apply the fundamental flow equations (continuity, momentum, and		
ent	energy), analytical techniques, and computational methods toward solving		
pn s	aerodynamics problems of varying complexity.		
	2-b. Apply the engineering design process, including modeling and analysis, to		
	A nalyza an acrodynamic design within realistic constraints, such as		
ed Dut	economic environmental and manufacturability		
ess	3-a. Produce a well-written report on an aerodynamic design project for an		
ASS	informed audience of peers using appropriate formatting and grammar		
	informed dudience of poets doing appropriate formating and grammar.		
•.	2-d. Produce an aerodynamic device that meets specified needs.		
her	6-b. Use the wind tunnel and data acquisition equipment for experimentation in		
Of	the thermal/fluids laboratory.		
Required or Floating	Flective		
Course.			
Relationshin of Course to	Meets: Educational Objectives 1 2 4		
Program:	Student Outcomes 1 2 3 6		

Prepared by:	Stephen Solovitz	Date:	March 16, 2018 (4.6.18 mb)
Approved by USC:	4/16/2018		