School of Engineering and Computer Science MECH 438: Microfabrication Technology

		429 Microfishnization Technology 2 Come Description OUTEN 107 MATT			
Catalog Data:		438 Microfabrication Technology 3 Course Prerequisite: CHEM 105; MATH			
		315; PHYSICS 202. Microelectronic fabrication technology, semiconductor			
		material, diffusion, thermal oxidation, ion implantation, lithography, etching, thin			
		film deposition, CMOS integration and MEMS. Credit not granted for both			
		MECH 438 and MECH 538. Offered at 400 and 500 level. Typically offered Fall.			
Class Schedule:		Three 50-min lecture sessions per week, for one semester None			
Laboratory Schedule:		CHEM 105; PHYSICS 202; MATH 315			
Prerequisites by Course:		CHEM 105; PHYSICS 202; MATH 315			
Prerequisites by Topic:		1. Crystal structures			
		2. Dynamic of particles			
		3. Differential equations			
Textbook:		Stephen A. Campbell, The Science and Engineering of Microelectronic			
		Fabrication, Second Edition, Oxford University Press, 2001			
Course Coordinator:		Dr. Jong-Hoon Kim			
Course Objectives:		1. Understand semiconductor material properties			
		2. Understand principles and mechanisms of microfabrication techniques			
		3. Learn the bulk and surface micromachining technology			
		4. Be familiar with CMOS and integrated circuit fabrication process			
		5. Obtain fundamental knowledge of MEMS devices			
Topics Covered:		1. Introduction to microelectronic fabrication			
		2. Semiconductor material properties, crystal growth, and wafer preparation			
		3. Dopant diffusion			
		4. Thermal oxidation and Si/SiO ₂ interface			
		5. Ion implantation			
		6. Lithography: photolithography, photoresist, and nonoptical lithography			
		7. Etching: wet etching and dry etching			
		8. Thin film deposition: evaporation, sputtering, chemical vapor deposition, and			
		epitaxial growth			
		9. CMOS integration and integrated circuit manufacturing			
		10. Fundamentals of MEMS			
Lab Experiments and		None			
Activities: Course Outcomes: Students		will be able to:			
	Students	·			
	L	1-a. Demonstrate knowledge of semiconductor materials and microfabrication			
	foi nt ies	techniques.			
	sed den om	4-a. Evaluate microfabrication processes and products in consideration of			
	Assessed for Student Outcomes	economic and environment factors.			
	As: O	7-a. Use multiple resources to learn new material not taught in class for term			
		papers.			
		3-a. Produce term papers in the microfabrication area using appropriate format			
	ıer	and grammar for professional audiences.			
	Other	and grammar for professional audiences.			
	Other	and grammar for professional audiences. 3-b. Deliver well-organized, logical oral presentations, including good			
Required or Elective		and grammar for professional audiences.3-b. Deliver well-organized, logical oral presentations, including good explanations when questioned.			
Required or Elective Course:		and grammar for professional audiences. 3-b. Deliver well-organized, logical oral presentations, including good			

Relationship of Course to Program:	Meets: Educational Objectives <u>1</u> , <u>2</u> , <u>3</u> , <u>4</u> Student Outcomes <u>1</u> , <u>3</u> , <u>4</u> , <u>7</u>		
Prepared by:	Dr. Jong-Hoon Kim	Date:	April 5, 2018 (4/6/2018 mb)
Approved by USC:	4/9/18		