WASHINGTON STATE UNIVERSITY VANCOUVER World Class. Face to Face.

School of Engineering and Computer Science Mech 435: Introduction to Microfluidics

Catalog Data:	435 Introduction to Microfluidics 3 Course Prerequisite: MECH 303, MATH 315. Overview of microfluidics, scaling laws, intermolecular forces, surface tension, passive scalar transport, electrowetting, electrokinetics, dielectrophoresis, microfabrication. Typically offered Fall.		
Class Schedule:	Three 50-minute lecture sessions per week, for one semester.		
Laboratory Schedul	None		
Prerequisites by Co.	<i>e</i> : MECH 303, MATH 315		
Prerequisites by Top			
Required Texts:	Brian Kirby, <i>Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic</i> Devices, Cambridge University Press, 2010		
Course Coordinator	Dr. Hua Tan		
Course Objectives: Topics Covered:	 Understanding some advanced fluid mechanics relevant to micro scale device. Design and analyze microfluidic devices. Demonstrate a basic understanding of principle and processes of microfluidic device fabrication, testing and characterization. Understanding lab-on-a-chip and the impact of microfluidics device for various engineering application. Make reasonable decisions about the microfluidic device, selection, options and performance. Concept of Microfluidics Scaling law and continuum model, hydrodynamics of microfluidic Pressure driven flow in microchannels, passive scalar transport and stokes 		
	 flows 4. Electrokinetics, surface tension related microfluidics 5. Fabrication techniques 6. Microfluidic applications including Inkjet technology, microvalves, micropumps, micromixer, microreactor, etc. 		
Lab Experiments an Activities:	None		
Course Outcomes:	tudents will be able to:		
	 1-b. Classify microfluidic devices to identify functioning mechanisms defined in engineering problems. 1-c. Use appropriate physical models to solve the transport phenomena at the microscale. 7-b. Use proper learning strategies to examine the fabrication techniques for microfluidics. 7-c. Apply new knowledge to design microfluidic devices for a certain application. 		

	Other	 1-a. Demonstrate understanding of various tramicro/nanoscale. 1-d. Apply the principles in fluid mechanics to 3-a. Write reports to describe the features and using discipline-specific conventions incl 3-b. Deliver well-organized and logical prese 5-a. Develop project tasks and timeline with to 5-b. Contribute to the project effectively in a 	to solve f l function uding gr ntations team me	fluid flow in microfluidics. ns of novel microfluidics, aph/tables, citations, etc. related to microfluidics.
Required or Elective Course:		Elective		
Relationship of Course to Program:		Meets: Educational Objectives <u>1, 2, 3, 4</u> Student Outcomes <u>1, 3, 5, 7</u>		
Prepared by: Approved by USC:		Dr. Hua Tan 4/9/2018	Date:	4/9/2018 (4/10/18 mb)