WASHINGTON STATE UNIVERSITY

School of Engineering and Computer Science MECH 304: Introduction to Electronic Circuits

Catalog Data:		304 Introduction to Electronic Circuits 3 Course Prerequisite: MATH 315 or
		concurrent enrollment; PHYSICS 202. Introduction to DC and AC circuits, analog
		electronic components, digital circuits, and engineering measurements. Typically
		offered Fall.
Class Schedule:		Three 50-min lecture sessions per week, for one semester
Laboratory Schedule:		None
Prerequisites by Course:		Math 315 or c//; Physics 202
Prerequisites by Topic:		1. Calculus, linear algebra, differential equations
		2. Understanding of voltage, current, charge concepts
		3. Basic understanding of computer programming
Textbook:		James A. Svoboda, Introduction to Electric Circuits, Wiley, 9th edition, 2014
Course Coordinator:		Dr. Jong-Hoon Kim
Course Objectives:		1. Demonstrate basic understanding of circuit elements and electrical circuits.
		2. Become familiar with the basic circuit analysis theorem.
		3. Apply the basic circuit analysis methods to solve DC, AC, and simple transient
		circuit problems.
Topics Covered:		1. Basic concept; Circuit variables and units
		2. Introduction to circuit theory, Ohm's law, Kirchhoff's law
		3. Node-voltage and loop-current analysis techniques
		4. Capacitance and inductance
		5. RC, RL, RLC circuits
		6. Transient and steady-state response analysis
		7. Diodes and transistors
		8. Operational amplifiers
		9. Basic digital electronic circuits, logic states, gates
Lao Experiments and		None
Course Outcomes:	Students	will be able to:
	Assessed for Student Outcomes	1-d. Apply appropriate analysis methods to different types of circuits containing multiple electric components
		multiple electric components.
		7-a. Use multiple resources to study an electrical circuit not taught in class.
		7-b Use learning strategies based on credible sources to validate experimental
		circuit responses.
		7-c. Apply software tools to analyze new electrical circuits designed by students.
	Other	1-a. Demonstrate basic understanding of the physics of basic electronic devices
		and various transducers.
		6-b. Learn how to use software tools to simulate electrical circuits.
Required or Elective		Required
Delationship of Course to		Meets: Educational Objectives 1 4
Program.		Student Outcomes 1 6 7
1 i ogram.		Student Outcomes <u>1, 0, 7</u>
Prenared hv.		Dr. Jong-Hoon Kim Date: April 5 2018 (4/0/19 mb)
Approved by USC.		4/9/2018
Approved by USC.		T/ // 2010

Master_Syllabi.doc - 2 11/28/2018