World Class. Face to Face.

School of Engineering and Computer Science MECH 303: Fluid Mechanics

Catalog Data:		303 Fluid Mechanics 3 Course Prerequisite: MECH 212. Physical properties, fluid statics laminar and turbulent flow, impulse and momentum, similitude, pipe					
		flow, boundary layers, lift, drag and measurement techniques, fluid					
		experimentations. Recommended preparation: MATH 315. Typically offered Fall.					
Class Schedule:		Three 50-minute lectures per week, for one semester					
Laboratory Schedule:		None					
Prerequisites by Course:		MECH 212. Recommended preparation: MATH 315.					
Prerequisites by Topic:		1. Knowledge of how to apply a basic free body diagram is required, as is basic understanding of dynamics of solid particles					
		2. Basic knowledge of conservation of mass, conservation of energy, and fluid					
		properties is required.					
Textbook:		B.R. Munson, D.F. Young, and T.H. Okiishi, <i>Fundamentals of Fluid Mechanics</i> , 8 th Edition, John Wiley & Sons, Inc., 2016.					
Course Coordinator:		Dr. Stephen Solovitz					
Course Objectives:		1. Ability to classify fluid flow problems according to relevant simplifying					
		2 Ability to simplify and solve problems with the hydrostatics equation integral					
		2. Admity to simplify and solve problems with the hydrostatics equation, integral equations and the energy equation for viscous and inviscid flows					
		3. An understanding of the differential conservation of mass and momentum and					
		the utility of derived equations.					
		4. Ability to simplify specific fluid problems with the aid of dimensional analysis.					
		5. Ability to apply the methods of similitude for model analysis.					
		6. Ability to design a simple pipe network to meet realistic design constraints.					
Topics Covered:		1. Fluid Properties					
		2. Hydrostatics					
		3. Integral Equation Conservation of Mass, Momentum and Energy					
		5. Dimensionless Groups and Similarity					
		6. Inviscid Fluid Flow					
		7. Viscous Internal Fluid Flow					
		8. Viscous External Fluid Flow					
Lab Experiments and Activities:		None					
101111105.							
Course Outcomes:	Students	will be able to:					
	es	1-a. Demonstrate an understanding of the fundamental equations of continuity,					
	omo	Newton's 2nd law, and the 1st law of thermodynamics.					
	d fo utc	1-c. Use different models, such as integral or differential techniques, to					
	Sse O	1-d Apply mathematical principles computational methods or analytical					
	sse lent	techniques toward solving specific fluids problems with a range of					
	A tud	complexity.					
	Š						

	Other	1-b. Evaluate assumptions or conditions to identify fluid flows, such as internal or external flow.						
Required or Elective Course:		Required						
Relationship of Course to Program:		Meets: Educational Objectives <u>1</u> Student Outcomes <u>1</u>						
Prepared by:		Steph	en Solovitz			Date:	March 16, 2018 (4.6.18 mb) Correction (1.10.19 mb)	
Approved by USC:		4/2/18	8					