WASHINGTON STATE UNIVERSITY VANCOUVER World Class. Face to Face.

School of Engineering and Computer Science ECE 489: Introduction to Control Systems Master Syllabus

Catalog Data:	489: Introduction to Control Systems – 3 credits. Laplace Transform, modeling techniques, block diagrams, system characteristics (linearity, time invariance, stability, steady-state error, etc.), root locus, frequency response methods, PID controllers, controller design with MATLAB, and state-space methods. Typically offered in Spring.			
Class Schedule:	Two lecture hours per week, for one semester.			
Laboratory Schedule:	None			
Prerequisites by Course:	ECE 321 or MECH 304			
Prerequisites by Topic:	 Understanding of differential equations and linear algebra Understanding of circuit theory, modeling, and analysis 			
Typical Text:	Ogata, Kat., Modern Control Engineering, 5th Edition, 2010, Prentice-Hall Publishing, ISBN 978-0136156734.			
Course Coordinator:	Dr. Josue Campos do Prado			
Course Objectives:	 Students will: Use mathematical and physical principles to model electrical, mechanical, and other engineering systems. Represent a linear system in state space and transfer function form. Study the system characteristics in both time and frequency domain. Design controllers that satisfy the desired transient and steady-state response. Use computational tools to model, simulate, and analyze different systems. 			
Topics Covered:	 The Laplace Transform System Modeling System Characteristics Root Locus Analysis Frequency Response Methods PID Controllers State-Space Methods 			
Lab Experiments and Activities:	None			

Course Outcomes:	Students will be able to:				
	Assessed for Student Outcomes	 1-c. Use time-domain and frequency-domain models to formulate solutions. 1-d. Apply differential equations and Laplace transform to solve different engineering problems. 2-b. Apply design process to satisfy system requirements. 6-b. Conduct analysis and interpretation of the data. 			
	Other	 1-a. Demonstrate fundamental knowledge of modeling and analysis of engineering systems. 2-d. Produce solutions that meet specified needs for system designs. 6-a. Use MATLAB for modeling different types of systems. 			
Relationship of Course to Program:		Meets: Educational Objectives: <u>1, 2, 3, 4</u> Student Outcomes: <u>1, 2, 6</u>			
Prepared by:		Dr. Josue Campos do Prado	Date:	Jan. 24, 2022	