School of Engineering and Computer Science ECE 414: Introduction to Digital Signal Processing Master Syllabus

Catalog Data:	FCF 414: Introduction to Digital Signal Processing: 3 credits (2-3)
	Discrete and fast Fourier Transforms, Z-Transform, sampling, discrete convolution, digital filter design and effects of quantization. Typically offered Fall.
Class Schedule:	Two lecture hours per week, for one semester.
Laboratory Schedule:	One 3-hour lab session per week, for one semester.
Prerequisites by Course:	ECE 341
Prerequisites by Topic:	Understanding of the frequency domain, Laplace and Fourier transforms
Typical Text:	Discrete-time Signal Processing, Oppenheim, Schafer and Buck, 3 rd Edition, Prentice Hall, 2010. Digital Signal Processing, Principles, Algorithms, and Application, John G. Proakis, Dimitris G. Manolakis, 4 th Edition Digital Signal Processing using MATLAB, Vinay K. Ingle and John Proakis, 3 rd Edition, Cengage Learning, 2007.
Course Coordinator:	Dr. Aref Majdara
Course Objectives:	 Students will: Represent and analyze discrete time linear signals and systems in the time and frequency domains. Apply the Z-Transform and discrete Fourier transform digital signal processing, including digital filter specification, design, implementation, and testing. Perform the discrete Fourier Transform of a sampled signal based on the knowledge of the Continuous Fourier Transform, including understanding the sampling theorem and the concept of aliasing. Apply the concepts of convolution and correlation.
Topics Covered:	 Discrete-time signals and systems review Sampling Multirate Signal Processing Z-Transforms Inverse Z-Transforms Discrete Fourier Transforms Fast Fourier Transforms FIR and IIR Filters
Lab Experiments and Activities:	Laboratory sessions will extensively involve MATLAB examples and problems supplementing the theory discussed in the class.

Course Outcomes:	Students will be able to:	
oucomes.	Assessed for Student Outcomes	 1-d. Determine the Z-transform of the signal and compute and sketch the magnitude and phase spectra of signals. 6-a. Be able to apply Discrete Fourier Transforms for signals with specific requirements. 6-b. Use simulation software MATLAB to analyze and process the signals.
	Other	 2-b. Apply methods such as linear and circular convolution, Z and Discrete Fourier Transforms to convert signal to frequency domain for signal analysis. 2-c. Apply Fast Fourier Transform to save the computation resources. 3-a. Write lab reports based on MATLAB simulation results. 7-a. Analyze signals (such as speech, image and radar signal) and implement signal processing for course project.
Relationship of Cou to Program:	ırse	Meets: Educational Objectives: <u>1</u> , <u>2</u> , <u>4</u> Student Outcomes: <u>1</u> , <u>2</u> , <u>3</u> , <u>6</u> , <u>7</u>
Prepared by:		Date: Oct. 5, 2011 reviewed 09/17 3/21/18 (mb); 8/31/21