

School of Engineering and Computer Science ECE 370: Electromagnetic Fields and Waves Master Syllabus

Catalog Data:	ECE 370: Electromagnetic Fields and Waves ; 3 credits Electrostatic and magnetostatic fields; Faraday's laws, Maxwell's equations,			
	electromagnetic properties of matter, uniform plane waves and transmission lines.			
Class Schedule:	Three lecture hours per week, for one semester.			
Laboratory Schedule:	None			
Prerequisites by Course:	ECE 260, MATH 315			
Prerequisites by Topic:	 Calculus, linear algebra, differential equations Understanding of voltage, current, charge concepts Previous exposure to the fundamental laws of electricity and magnetism 			
Typical Text(s):	Fawwaz T. Ulaby and Umberto Ravaioli, <i>Fundamentals of Applied</i> <i>Electromagnetics</i> , 7 th Ed., Pearson, 2015.			
Typical Reference(s):	Mathew N. O. Sadiku, <i>Elements of Electromagnetics</i> , Oxford University Press, 2001			
Course Coordinator:	Dr. Tutku Karacolak			
Course Objectives:	 Understand Maxwell's equations Calculate electromagnetic field distributions Learn electromagnetic fields, charges, currents Apply 3-dimensional calculus and electrostatic boundary value problems Understand basic units (charge, voltage, current) Understand field concepts underlying common electrical components (inductors, capacitors, resistors, and transistors) 			
Topics Covered:	 Electromagnetic Model, Vector Analysis Review Coulomb's law and electric field Gauss's law, Laplace, Poisson's equations and applications Capacitance and Capacitors Steady Electric Currents Conductors and dielectrics in static electric field Electric flux density and dielectric constant Boundary conditions for electrostatic fields Electrostatic energy and forces Boundary-value problems Current density and Ohm's law Joule's law, boundary conditions, resistance Vector magnetic potential Magnetic field intensity, magnetic circuits Magnetic field intensity, magnetic circuits Magnetic materials, boundary conditions, inductance Time varying fields Maxwell's equations 			

Lab Experiments and Activities:		None				
Course Outcomes:	Studen	tudents will be able to:				
	Assessed for Student Outcomes	 1-a. Demonstrate knowledge of Gauss's, Coulomb's, Ampere's, Faraday's laws and principles of transmission lines. 1-c. Use appropriate models to formulate solutions for time varying fields, electrostatic energy/forces, magnetic field intensity, plane wave theory, and transmission lines. 1-d. Apply mathematics (integral calculus, differential equation, linear algebra, complex variables) to obtain analytical solutions of Maxwell's equations and electromagnetic wave propagation. 				
	Other					
Relationship of Course to Program:		Meets: Educational Objectives <u>1</u> Student Outcomes <u>1</u>				
Prepared by:		Dr. Tutku Karacolak	Date:	March 2, 2018; reviewed 10/2011 Reviewed 02/12		