

School of Engineering and Computer Science ECE 366: Introduction to VLSI Design Master Syllabus

Catalog Data:	ECE 366: Introduction to VLSI Design; 3 credits (2-3)			
	CMOS devices and deep-submicron fabrication technology; interconnect modeling, power and clock distribution, area, power, and speed optimization. Typically offered in Spring.			
Class Schedule:	Two lecture hours per week, for one semester.			
Laboratory Schedule:	One 3-hour lab session per week, for one semester.			
Prerequisites by Course:	ECE 214; ECE 349			
Prerequisites by Topic:	 Familiarity with logic concepts, digital circuits and modern CAD tools. Basic experience in schematic level design entry and simulation of electronic circuits using SPICE. Basic understanding and experience in designing, analyzing and optimizing digital systems (combinational/sequential) employing logic gates. Basic knowledge of semiconductor device electronics. 			
Typical Text(s):	J. Rabaey, A. Chandrakasan, and B. Nikolic, <i>Digital Integrated Circuits, 2nd Edition</i> , Prentice-Hall, 2003.			
Typical Reference(s):	 N.H.E. Weste, and K. Eshraghian, <i>Principles of CMOS VLSI Design, 2nd Edition</i>, Addison Wesley, 2004. M. J. S. Smith, <i>Application-Specific Integrated Circuits</i>, Addison-Wesley, 1997. R. J. Baker, <i>CMOS Circuit Design, Layout, and Simulation, 2nd Edition</i>, Wiley-IEEE, 2007. 			
Course Coordinator:	Dr. John Lynch			
Course Objectives:	 Learn to design and implement state-of-the-art digital Very Large Scale Integrated (VLSI) chips using CMOS technology. Utilize workstation-based modern CAD tools to complete VLSI projects and to build industry standard design libraries. Introduce the principles of digital integrated circuit design, layout, optimization and verification at transistor, gate and system levels. 			
Topics Covered:	 Overview of digital integrated circuits Manufacturing/Fabrication Processes CMOS Integrated Circuits Design Rules Trends in Process Technology MOSFET transistors CMOS Inverter Design of Combinational Gates Static CMOS Dynamic CMOS Design of Sequential Logic Gates Latches Registers Cell-based Design Methodology 			

		 9. Timing Issues in Digital Circuits 10. Layout Techniques, full-custom design 11. Circuit Simulation Interconnect (resistance, capacitance, ir Wire models 12. Design for Testability 13. Packaging and Testing 	nductanc	e)	
Lab Experiments and Activities:		Lecture sessions converted into laboratory sessions as needed for demonstrations and hands-on activities. These activities are translated into -but not limited to- the following experiments:			
		 Tutorial on using Cadence Design Environment Inverter Schematic, Symbol Inverter Simulation: Transient, DC w/parametric, Voltage transfer characteristics Inverter Layout, DRC, Extraction, and LVS NAND gate Schematic, Test Bench, Simulation, and Layout Cell Interconnection, Routing Techniques Back Annotation, simulation of extracted view, post-layout characterization Dynamic Circuits using Domino Logic 			
Course St Outcomes:	Students will be able to:				
	Assessed for Student Outcomes	 1-d. Apply probability and statistics in analyzing die yield, fault models, and testing of VLSI chips. 2-b. Apply design process to satisfy project requirements for VLSI devices and systems. 6-a. Identify constraints, assumptions, and models for VLSI circuit experiments. 			
	Other	 2-a. Define engineering problems from specified needs for VLSI devices. 3-a. Produce lab reports using appropriate formats and grammar with discipline-specific conventions. 6-b. Use appropriate simulation and modeling techniques for VLSI circuit experiments. 6-c. Conduct analysis and interpretation of the data. 6-d. Draw conclusions by evaluating experimental results. 			
Relationship of to Program:	Course				
Prepared by:		Dr. John Lynch	Date:	Revised 3/2018, 3/21/18 (mb); December 30, 2009 reviewed 01/12 Reviewed 02/12, 11/02/18 JL/mb	