WASHINGTON STATE UNIVERSITY VANCOUVER World Class. Face to Face.

School of Engineering and Computer Science ECE 349: Principles of Solid State Devices Master Syllabus

Catalog Data:	ECE 349: Principles of Solid State Devices ; 3 credits Semiconductor theory; carrier diffusion and drift, direct and indirect energy materials, homo and hetero-junctions, operations principles of bipolar junctions and MOS field effect transistors, metal-semiconductor contacts. Typically offered in Fall.
Class Schedule:	Three lecture hours per week, for one semester.
Laboratory Schedule:	None
Prerequisites by Course:	CHEM 105, PHYS 202, ECE 325 or c//
Prerequisites by Topic:	Basic understanding of physics, chemistry, and semiconductor devices and their applications, including diodes, bipolar junction transistors and field-effect transistors.
Typical Text:	D. Neamen, Semiconductor Physics And Devices, Basic Principles, 4th edition, McGraw-Hill 2011
Course Coordinator:	Dr. Feng Zhao
Course Objectives:	 Students will: Describe and apply the semiconductor device equations based on the Shockley model, frequently used assumptions/approximation, and describe their limitations. Recognize semiconductor statistics, excess carrier phenomena and recombination mechanisms. Derive various boundary conditions in non-equilibrium p-n homo- and heterojunction structures. Analyze detailed characteristics of the bipolar junction transistor in both dc and ac modes of operation including the equivalent circuit models. Describe metal-insulator-semiconductor theory and its application to the metal-oxide-semiconductor field effect transistors. Recognize the non-ideal, performance limiting phenomena encountered as devices are scaled. Understand fundamental principles behind the working of photonic devices such as LED's, solar cells and photodetectors.
Topics Covered:	 Basics of Semiconductor Theory a. Basic equations b. Standard assumptions c. Mobility and conductivity d. Quasi-Fermi level e. Recombination P-N Junction Theory a. Junction and interface in equilibrium b. Boundary conditions c. Transport problems d. P-N junction diodes

		3. Bipolar Junction Transistors
		a. Minority carrier profiles
		b. Current components and current gain
		c. Secondary effects
		d. Device models (Ebers-Moll and Gummel-Poon)
		e. Small signal response
		f. Heterojunction bipolar transistors
		4. Metal Oxide Semiconductor Devices
		a. MIS theory
		b. MOSFET structures and models
		c. Modern and future MOSFET structures
		d. Metal-Semiconductor Junctions/Heterostructures
		5. Photonic devices
		a. LED's
		b. Photodetectors
		c. Solar Cells
Lab Experimen	ts and	None
Activities:		
Course	Students	s will be able to:
Outcomes:		
		1-a. Demonstrate knowledge of fundamental semiconductor physics and devices.
	Assessed for Student Outcomes	
	ssessed fo Student Dutcomes	devices in various operating regimes.
	ess tuc ttcc	2-a. Define operation and characteristics of diodes and transistors under both
	Ou SS	steady-state and dynamic operations.
	×.	
		1-d. Apply semiconductor statistics to calculate carrier concentrations in
	er	semiconductors as a function of temperature, doping and applied bias.
	Other	2-d. Produce solutions to satisfy designs for semiconductor devices.
	0	
Relationship of	Course	Martin Educational Objections, 1, 2
to Program:		Meets: Educational Objectives <u>1, 2</u>
		Student Outcomes <u>1, 2</u>
Prepared by:		Dr. Feng Zhao Date: March 14, 2018; 3/21/18 (mb)