WASHINGTON STATE UNIVERSITY VANCOUVER World Class. Face to Face.

School of Engineering and Computer Science ECE 325: Electronic Devices and Applications Master Syllabus

Catalog Data:	ECE 325: Electronic Devices and Applications; 4 credits (3-3)
	MOS small and large signal models, bipolar transistors, biasing and parasitics, amplifier design and feedback, frequency response; circuit simulation and device models. Typically offered in Fall.
Class Schedule:	Three lecture hours per week, for one semester.
Laboratory Schedule:	One 3-hour lab session, for one semester.
Prerequisites by Course:	ECE 214, ECE 260
Prerequisites by Topic:	 Understanding of electric circuit theory, modeling and analysis. Understanding of digital logic circuit design.
Typical Texts:	R. L. Boylestad, L. Nashelsky, <i>Electronic Devices and Circuit Theory</i> , 11/e, Prentice Hall 2012, ISBN: 978-0-13-262226-4
	R. L. Boylestad, L. Nashelsky, <i>Lab Manual to accompany electronic devices and circuit theory</i> , <i>11/e</i> , Prentice Hall 2012, ISBN: 978-0-13-262245-5
Course Coordinator:	Dr. John Lynch
Course Objectives:	 Students will: Understand, measure, and utilize the terminal characteristics of diodes, bipolar junction transistors (BJTs), and metal oxide silicon field effect transistors (MOSFETs). Design and analyze single-stage amplifiers using BJTs and MOSFETs.
Topics Covered:	 Ideal diode and analysis of diode circuits Diode models: Schockley's equation, piecewise-linear models Analysis of diode circuits based on non-ideal models Zener and light-emitting diodes Diode applications: rectifier circuits, Zener voltage regulators, etc. Temperature effects Physical operation and characteristics of enhancement-mode NMOS and PMOS transistors, modes of operation MOS transistor circuits at DC MOS transistor as a switch and as an amplifier Small-signal MOS model MOS transistor amplifiers; common-source, common-drain, and common-gate single-stage configuration; two-stage amplifiers; differential amplifiers BJT physical operation and characteristics of NPN and PNP transistors, modes of operation BJT circuits at DC BJT as a switch and as an amplifier Single-stage BJT amplifiers, comparison of BJT and MOS transistors Frequency response of BJT and MOS devices.

Lab Experin Activities:	rents and	 Topics covered will be converted into laboratory sessions as needed to measure, analyze, and design diode, BJT, and MOSFET circuits. These activities are translated into -but not limited to- the following experiments: 1. Diode characteristics 2. Diode clipping/clamping circuits 3. Light-emitting and Zener diodes 4. BJT characteristics 5. BJT bias circuits 6. BJT amplifier circuits 7. JFET characteristics 8. JFET bias circuits 9. JFET amplifier circuits 10. Frequency response of BJT and FET amplifier circuits 		
Course Outcomes:	Students wi	ll be able to:		
	Assessed for Student Outcomes	 Use appropriate models to formulate solutions for electronic devices and applications. Identify constraints, assumptions, and models for electronics experiments. Conduct analysis and interpretation of the data from electronics experiments. Draw conclusions by evaluating experimental results with respect to theory. 		
	Other	 1-a. Demonstrate knowledge of fundamental electronic device principles. 1-d. Apply mathematics, scientific and/or engineering principles toward solving electronics problems. 2-b Apply design process to satisfy project requirements for electronic systems. 6-b. Use appropriate equipment and techniques for electronic experiments. 		
Relationship to Program:	of Course	Meets: Educational Objectives <u>1, 2</u> Student Outcomes <u>1, 2, 6</u>		
Prepared by:	•	Dr. John LynchDate:December 30, 2009 reviewed 02/12, reviewed 9/4/12, revised 09/17, revised 03/2018; 3/21/18 (mb)		