

School of Engineering and Computer Science ECE 321: Circuit Modeling and Analysis II Master Syllabus

Catalog Data:		ECE 321: Circuit Modeling and Analysis II; 3 credits			
		Magnetically coupled circuits, frequency response, Laplace transforms, frequency response, two-port networks and Fourier circuit analysis. Typically offered in Fall.			
Class Schedule:		Three lecture hours per week, for one semester.			
Laboratory Schedule:		None			
Prerequisites by Course:		ECE 260; MATH 315			
Prerequisites by Topic:		1. Understanding of circuit theory, modeling and analysis.			
		2. Understanding of network theory as applied to linear and non-linear circuits under static and dynamic operation.			
Typical Text:		Alexander, K. and Sadiku, M., <i>Fundamentals of Electric Circuits, 5th Edition</i> , McGraw-Hill, 2013, ISBN 978-0-07-338057-5.			
Course Coordinator:		Dr. Praveen Sekhar			
Course Objectives:		 Students will: 1. Develop circuit models in terms of differential equations. 2. Use Laplace transforms for analysis of circuits in the s-domain. 3. Perform Fourier analysis. 			
Topics Covered:		 Complex Frequency Frequency response, poles and zeros Mutual inductance and magnetically coupled circuits Transformers Two port networks Fourier analysis Laplace transform techniques State space analysis 			
Lab Experiments and Activities:		None			
Course Outcomes:	Stude	its will be able to:			
	Assessed for Student Outcomes	 1-a. Demonstrate fundamental knowledge of circuit analysis in solving advanced electrical engineering problems. 1-c. Use frequency-domain electric circuit models such as Bode plots to formulate solutions. 1-d. Apply Laplace and Fourier transforms to solve complex electric circuit problems. 			
	Other	6-a. Identify circuit models and apply appropriate frequency. transformations and analysis techniques.			

Relationship of Course to Program:	Meets: Educational Objectives <u>1</u> Student Outcomes <u>1, 6</u>		
Prepared by:	Dr. Praveen Sekhar	Date:	March 9, 2018; 2/21/18 (mb) December 30, 2009 reviewed 10/2011 Reviewed 09/17